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Transverse Vibration Control of Axially Moving Membranes by
Regulation of Axial Velocity

Quoc Chi Nguyen and Keum-Shik Hong, Senior Member, IEEE

Abstract—TIn this brief, a novel control algorithm that suppresses
the transverse vibrations of an axially moving membrane system
is presented. The proposed control method is to regulate the axial
transport velocity of the membrane so as to track a desired profile
according to which the vibration energy of the membrane at the
end of transport decays most quickly. An optimal control problem
that generates the desired profile of the axial transport velocity is
solved by the conjugate gradient method. The Galerkin method
is applied in order to reduce the partial differential equations de-
scribing the dynamics of the axially moving membrane into two
sets of ordinary differential equations (ODEs) representing lon-
gitudinal/lateral and transverse displacements. For control design
purposes, these ODEs are rewritten into state-space equations. The
vibration energy of the axially moving membrane is represented
by a quadratic form of the state variables. In the optimal con-
trol problem, the cost function modified from the vibration energy
function is subject to the constraints on the state variables, and the
axial transport velocity is considered as a control input. The effec-
tiveness of the proposed control method is illustrated via numerical
simulations.

Index Terms—Axially moving membrane, conjugate gradient
method, flexible electronics, Galerkin method, roll-to-roll (R2R)
system, transverse vibration suppression, vibration control.

I. INTRODUCTION

HERE are numerous industries that use web-material

transport systems such as papers, textiles, metals, poly-
mers, and composites. In these systems, the application of
roll-to-roll (R2R) processing yields better performance and
supports mass production and high-speed automation. How-
ever, the mechanical vibrations (particularly in the transverse
direction) of web materials have been the main quality- and
productivity-limiting factor, especially in high-speed R2R sys-
tems. The present work was motivated by the vibration control
problem in R2R lithography systems and, indeed, it should
be noted that the lithographic process is a key manufacturing
technology in flexible electronics. For example, Fig. 1 depicts
a R2R patterning system of Anvik Corporation [1]. In this
system, the flexible substrate web, which is fed from a supply
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Fig. 1. Example of large-area high-throughput roll-to-roll patterning systems
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roll, extends across the exposure region on the scanning stage,
and is wound onto a take-up roll. When the moving web comes
to a stop, residual transverse vibrations arise naturally, even if
the transport velocity of the moving web approaches the zero
value. Therefore, the lithographic process has to be suspended
until the web reaches a tolerable, minimal vibration state. In
spite of the fact that the moving web, which is considered as
an axially moving membrane, can be stabilized by the viscous
damping force if the axial transport velocity is less than the
critical value [2], this usually requires plenty of time. This,
process delay due to the vibrations of moving materials, is a
typical technical problem in almost all R2R systems. Therefore,
reasonably prompt vibration suppression of moving materials
for improvement of the control performance of high-speed R2R
systems is desirable.

Vibration control schemes for axially moving systems and
flexible structure systems include [3]-[22]. Boundary control
techniques have been developed in [4]-[18]. These achieve-
ments were predicated on the Lyapunov energy-based method.
They show that boundary control is an efficient control tech-
nique to stabilize axially moving systems. However, referring
again to the practical example of the lithography R2R system,
control forces exerted from boundary actuators might destroy
the surface of the substrate material. Therefore, boundary
control may not be a suitable solution for flexible electronics
manufacturing. The distributed control method [3] is another
possibility, but the disadvantage is that its implementation
requires distributed sensing and/or actuation, which is imprac-
tical in flexible electronics systems. Therefore, developing a
proper control method to suppress the transverse vibrations of
the moving webs of flexible electronics represents a formidable
challenge. This brief presents, as a means of overcoming that
difficulty, a novel control algorithm that employs the effects of
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a time-varying axial transport velocity of the moving web to
suppress transverse vibrations.

In investigating the dynamics of axially moving systems, ap-
proximation methods have been used [2], [23]-[30]. For in-
stance, approximate solutions were obtained in [23] with the
method of multiple time scales, whereas in [27], the Laplace
transform method was employed. In [2], [24]-[26], and [29],
the transverse displacement of an axially moving material was
expanded into a Fourier series, and the Galerkin method was
applied to reduce the partial differential equation (PDE) that
governs the transverse motion into a set of ordinary differen-
tial equations (ODEs), which is a dimensional discrete model.
It is known that the Galerkin method is quite reliable to an-
alyze axially moving systems translating at subcritical veloci-
ties [29]. The discrete models obtained by the Galerkin method
were compared with the results obtained from infinite dimen-
sional models, and good agreements were shown in [24]-[26]
and [29]. In [24], experimental results were consistent with nu-
merical simulation results of dynamic responses of an axially
moving belt using a discrete model. Indeed, the aforementioned
studies have shown that the Galerkin method can be used to an-
alyze the dynamic responses of axially moving systems.

Contributions of this brief are as follows. First, a novel
open-loop control scheme for suppressing the transverse vi-
bration of an axially moving web is presented: Contrary to
the conventional methods (boundary and distributed controls)
that use external forces, the proposed control method regulates
the axial transport velocities of the web. Henceforth, an unex-
pected damage on the web surface due to external forces can
be prevented. Second, the conjugate gradient (CG) method is
utilized to solve an optimal control problem that generates the
desired moving velocity of the web. Third, an axially moving
membrane system is used to model the moving web for the first
time.

II. PROBLEM FORMULATION

Fig. 2 shows the axially moving membrane travelling be-
tween two fixed rolls with the time-varying axial velocity V (#)
in the z-direction. V'(t) is assumed to be smaller than the crit-
ical speed [2]. The membrane has the following geometric prop-
erties: b is the width, & is the thickness, { is the length, and
A = bl is the area. The material properties of the membrane
are the mass density p, the viscous damping coefficient d,,, the
Young’s modulus %, and the Poisson’s ratio ©». The longitudinal
displacement u, the lateral displacement v, and the transverse
displacement w represent the motions of the membrane in the
fixed inertial frame Ozyz. Since u and v are in the plane of the
non-deformed membrane, they are called the in-plane displace-
ments [26]. Meanwhile, w is called the out-of-plane displace-
ment. The displacement variables are defined as

u=u(x,y,t), v=v(ryt), w=w(xyt). (1)
When the membrane translates with the acceleration V(t), the
tension P () of the membrane per unit width is given as [6]

P(x) = Py + phaV (1) 2)

1125

Fig. 2. Axially moving membrane travelling between two fixed rolls.

where P, denotes the tension of the undisturbed mem-
brane. For notational convenience, instead of w, (., y,t) and
wi(z, y,1), w, and w; will be used (similar abbreviations are
employed for other variables as well). According to the von
Karman strain theory, the strain-displacement relations are
given as [26]

Ep = Up + 11J§/2,5y = vy + 71:5/2
Euy = (Uy + Vo + Wawy)/2. 3)

The stresses are expressed as

0y = Eh(ug +vuy,) /(1 — ’U2)
oy = Eh (v, +vu,)/(1 — v?)
Owy = Eh (g + vy,)/2(1 + v)

0. =0y =0y =0 )

where the stresses associated with the z-direction is assumed to
be zero because the thickness of the membrane is very small in
comparison with other dimensions.

The kinetic energy T, the potential energy U, the virtual work
done W, and the virtual the momentum transport M, respec-
tively, are given as

T:ph/v~vdA %)
Ja
U= / (0pey + 0yey + 20,ye4y) dA 6)
A
b
W= (P(D)u|p=t — Pout|e=o)dy
0
— / dy(we + Vw,)dA (7
JA
b
M=o [verlz=hdy ®)
0

where the displacement vector r and the velocity vector v are
defined as

r=(z+ui+(y+v)j+uwk ©)
v =V +ue+ Vug )i+ (v + Vor)j + (we + Vwy )k (10)
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where 1, j, and k are the unit vectors in the x-, y-, and z-direc-
tions, respectively. Using the Hamilton’s principle, the equa-
tions of motion of the axially moving membrane are derived as

phtg + 2V + Vi, + Vug) — (04)s
—(Ouy)y = = —phV, (11
ph(vy + 2V, + V3, + va) —(0y)y — (Owy)e =0
(12)

ph(wy + Wit + VZies + wa) — (W + Tuyly)e

—(oywy + opywy)y + dy(wy + Vw,) =0 (13)
where the following boundary conditions are considered:

o, =Fo,v=w=0,atz =0 (14)

0o =Po+phlV,o=w=0, atz = (15)

Oy = Ogy = OyWy + Oy, =0, at y =0,0. (16)

Remark 1: Since the stresses o, 0y, and 0, are functions
of » and wv, it is concluded that (11) and (12) depend on only
and v. Therefore, (11) and (12) can be solved without using (13)
[26].

Remark 2: The boundary conditions (14) and (15) imply that
the left and right boundaries are fixed in the sense that the ver-
tical and lateral movements of the membrane are restricted, i.e.,
there is no slipping between the membrane and the rolls in the
y-direction. It should be noted that the established boundary
conditions are consistent with the practical example of the R2R
lithography system presented in Section I.

To obtain a finite-dimensional dynamic model, the Galerkin
method is applied to solve the PDEs (11)—(13). Let @, o, and
w denote the weighting functions for u, v, and w, respectively.
Multiplying (11)-(13) by the weighting functions and inte-
grating the resultant equations over the area A, we obtain

/ {phti(up + 2Vuge + Vg, + Vuw)
A

+ pht(ves + 2V vgs + Ve + Vog)

+ Uy Eh(u, 4+ vvy) /(1 — 0?)

+ v, Eh(vu, +v,)/(1 — v?)

+ Eh(uy 4+ v )Gy + 9.)/2(1 + v) }dA

b
= / ((Po + phlV )a|p=1 — Poti|p=1)dy — phV / adA
JO JA

(17)

/ {phio(we +2V ey + V0,0 + Vu:m) 10, (00 Wy + Ty Wy)
A

+ @y (oywy+omyw,)+d,w{w, +Vw,) }dA=0. (18)

The displacements of the membrane are approximated by a se-
ries of suitable functions called by basis functions. Two require-
ments of these approximations are as follows: 1) These basis
functions must be a complete set of functions and 2) the approx-
imate functions of the displacements must satisfy the boundary
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conditions. Therefore, the approximate functions of the longi-
tudinal, lateral, and transverse displacements are written in the
following forms [26], respectively:

N

)= > S annx

(z,y,t DY;(y) (19)
=0 =0
N N

(z,y,t ZZG () sin((é + Dma/DY;(y) (20)
1=0 37=0
N N

o(x,y,t ZZU () sin{(¢ + Dymz /)Y (y) (21)
1=0 37=0

where N is the total number of the basis functions in the z-
and y-directions. G (1), G7;(t), and G (#) will be determined
later. X,;(z) and Y} ( ) belong to the class of Legendre polyno-
mials and are defined as

R; X 3
Ly (=hr(2i=2r)! i
Xi(z) = ; 231G — )i = 27‘)!(2Ja/l 1) (22)
R,
Lo (=12 = 2n)! o
)= 2 e Y
where
R = 1/2, if i is even
" (- 1)/2, ifiisodd
_J1/2, if j is even
Ry = {(j —1)/2, ifjis odd. (24)

u, v, and w are expressed in the same forms as (19)—(21),
where G'};(1), Gﬁj( ) and G/ (t) are replaced with the arbitrary
functions G;(t), G7;(t), and G}}(t). The finite-dimensional
dynamic system will be obtained by carrying out the fol-
lowing procedure: (i) substituting both (19)—(21) and the
weighting functions into (17) and (18), respectively; (ii)
collecting all terms of the resultant equations obtained in
step (i) with respect to G” G}i, and G;‘,, (iii) collecting all
terms of the resultant equatlons obtained in step (ii) w1th
respect to G, G, G;‘],G;;,G“ G}‘J,G“ ng, and G
matrix-vector equation describing the dynamic state of the
longitudinal and lateral displacements is obtained as
MG (t) + C* (LG (t) + K* ()G (t) = 0" (25)
where  G""(¢) = (Go, Glos -+ G Gl
GY%,...,G%x)T. The PDE model of the transverse
displacement (13) can be reduced to a set of ODEs as
M* G“(f) + Cv¥ (f)G“(f) +KY#H)GY(t)=0 (26)
where G*(t) = (G, Gy, ..., G, ..., GEx)T . Tt is conve-
nient to rewrite the ODEs (26) in the state space form as follows:

(27)
where

(28)
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Fig. 3. Comparison of the axial velocities and the transverse vibration energies
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A(t) = (29)
Remark 3: It follows from Remark 1 that (25) can be solved
without using (26) to determine the functions G'}%;(¢) and G (2),
and consequently the longitudinal and lateral displacements, %
and v, as well as the stresses 0, 0, and o, . From (13), it is ob-
vious that o, o, and o, affect to the transverse displacement
w. Therefore, the determined functions of these stresses will be
used to obtain the approximate solution of w through (26).

Remark 4: In practice, since the length [ is much larger than
the width b and the thickness A, the in-plane stiffness is much
higher than the out-plane stiffness. Therefore, it can be assumed
that « and » are very small in comparison with w. Based on
this assumption, in this brief, only suppression of the transverse
displacement is focused.

Remark 5: For control design purposes, the linear operator
A combined with the approximate solution (21) will be used
to describe the dynamics of the transverse displacement. It is
obvious that the matrices C*(¢) and K™ (¢), and consequently
A(t), are functions of V(¢). This allows the eigenvalues of A
as well as the convergence speed, when S(¢) — 0, to be ad-
justed by changing V' (¢). Upon such a technical basis, a control
algorithm that utilizes the effects of the axial transport velocity
to suppress the transverse vibration is developed.

III. CONTROL DESIGN

Fig. 3 illustrates the idea of the proposed control algorithm. In
the case of no control, the axial transport velocity is regulated
to decrease from V(0) to zero using the conventional profile
constructed from a slope; that is, the transport deceleration is
constant. The conventional constant-deceleration profile shown
in Fig. 3(a) is a typical example widely used in practice. In this
case, the vibration energy () tends naturally to zero in the
presence of viscous damping. However, the phenomenon that
the residual vibration energy still has considerable value when
the axial transport velocity arrives at zero usually occurs. More-
over, the convergence of E(t) to zero depends on the value of
the viscous damping coefficient of the web material. Therefore,
vibration suppression that relies only on the viscous damping
force usually requires plenty of time. As shown in Fig. 3(b),
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Fig. 4. Convergence of the vibration energy in zigzag fashion.

when the developed control algorithm is applied, the axial trans-
port velocity is regulated to track a profile constructed from
several slopes instead of the conventional constant-deceleration
profile. This control algorithm is expected to impart two im-
provements to control performance. First, the vibration energy
is expected to decay quickly. Second, when the axial transport
velocity reaches the zero value, the transverse vibration is sup-
pressed completely. These improvements were validated both
by theoretical calculations [see (39)(40)—(53)] and numerical
simulation results. To obtain the proposed profile, an optimal
control problem is established, in which the cost function is
modified from the vibration energy function of the membrane
system and the time-varying axial transport velocity is consid-
ered as a control input. The CG method [31], [32] was used to
solve the optimal control problem. The application of the CG
method provides a good convergence property for the cost func-
tion as well as the vibration energy. As shown in Fig. 4, the vi-
bration energy of the moving web tends to the minimum point
(the zero value) in a zigzag fashion; that is, in every iteration of
the CG algorithm, V(¢) is regulated so that F2(¢) decreases in
the direction opposite to the gradient of £(t), where FE(t) de-
creases most quickly.
The state-space model (27) is rewritten as

S(t) =F(S,V.V)
= A S(t) + V(1)B1S(#) + VZ(£)B2S(t)
+d,V(t)B3S(t) + 0. B4S(t)

—|—(fyB5S(t) +(T$yB(;S(t) (30)

where V(%) is considered as a control input. In this brief, since
the function describing the axial transport velocity is assumed
to be piecewise linear in every iteration of the CG algorithm,
that is, V' is a constant, A, and B;{(# = 1,...,6) are constant
matrices.

The vibration energy of the membrane system, in which only
the transverse vibration is focused, is represented as

1/
E(t) = 5 /4 ph(wy + Vw,)?dA

1
+ 3 /4 (aTwz + O'ng + ZU;Eywmwy) dA. (31)

From (22) and (23), the following inequalities are obtained:

A ,— 29!
i)l < Z 2117"!(1‘(2—Z 7')!2(i )i 2r)! ¢
R, 2% — 2\
[(Xi(2))a| < Z(2<L - 274)/]‘)21'7”!(1(% 7,)!2(@ )l 2r)! (33)

r=0
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2]—27)
34
‘<2211 G—rNj—2r)! G4

r=0

[(Y5(y))y] < 2(2 i —2r)/b) 2“‘!(((2.7‘ — 2r)!

o J=rWi—

Substituting (19)—~(21) into (31) and using the inequalities
(32)—(35), the vibration energy (31) is then evaluated as

69

2N?

phbl Zfll+1/) )(L—N2

E(t) <

+ D)nV/D)S;

2N? 2

D (&) — N? + 1)/D)S;

i=0

+ &3bl

2N?

3 (Ea(i = N2+ 1w /1 (i)S;

i=0

+ &4bl

2N? 2

> Lopli)s
i=0

where the Heaviside step function ¢(¢) is defined as
$(i) = {ssn(i — N2) + fsgn(i - N2)[}1/2

and§;(i = 1,...,5) are positive constants. The upper bound of
the vibration energy (31) is obtained as

B(1) = ST()Q(S()

+ &bl (36)

(37

(3%)

where Q is a positive symmetric matrix of size 2N?2 x 2N?2.

Remark 6: It should be noted that if (%) converges to zero,
E(t) also converges to zero. From (38), it is obvious that £(#)
is represented in a linear quadratic form, which is a convenient
form for application of the CG method. Therefore, £/(#) will be
used to establish the optimal control problem.

To solve the optimal control problem is to find the axial trans-
port velocity V'(#) that minimizes the cost function

Tlir) = 38T UQUS()

where ¢y is the terminal time, subject to the state-space equa-
tions (30) with the initial and final conditions of the state vector

(39)

S(0) = S,
S(ty)=0

(40)
(41)
and subject to the inequality constraint of the control input

V(t) > 0. (42)

The initial state S(0)
ditions

=8, can be obtained from the initial con-

/w(-'l;a Y. 0) = ’wo(ZE? ',U)7 /wt(a;; Y, 0) = W0 (Jj U) (43)

The constraint (41) is combined with the cost function (39) as

Jtg) = 5STUNIQU) + WIS (49)
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where W is a weight coefficient matrix of size 2N? x 2N2.
From (30), since V' (#) is piecewise linear in every iteration of
the CG algorithm, the function F(S, V, V') can be represented as
F(S.V). Note that, given V (), the state-space equations (30)
can be solved for a unique S(V'). Therefore, J = J(V) is a
unique function of V'(#). Let H denote the Hamiltonian function
as

H(S,A, V) = AT(1)F(S,V) (45)

where A(t) is a 2N 2-dimensional vector including adjoint vari-
ables. The necessary optimality conditions are as follows [31]:

A(t) = —0H/9S = —A(t)A(t) (46)
Aty) = [Q(ty) + WIS(ty). (47)

Then, the gradient is
g(t) = OH/OV = AT (1)[B1 + 2VBy + d,B3]S(t).  (48)

The CG direction of V() in the kth iteration is determined as

Pr(t) = —gr(t) + Bror—1(t) 49)
where
B T ) oty )
G = /0 G (t)dt / /0 g, (t)dt (50)
and
g(t) = (OH/OV ). (51)

Let Vi () be the kth approximation to the proposed velocity
profile. A new estimate of V'(¢) is

Vis1(t) =

where oy, is chosen to minimize .J (Vi + apr). The technique
to search ay, is given in [32, Sec. 7]. The convergence of the CG
algorithm is presented in [31].

Profile Design: The proposed control design using the CG
algorithm to generate the proposed velocity profile is summa-
rized as follows.

Step 1) t5,8p, and Vj are given. Set k& = 0.

Step 2) Solve the state-space equation (30) forwards with
V = V} and the adjoint equations (46) and (47)
backwards, and then compute p; from (49). If &k =
0, then pg = —go.

Step 3) Choose aj to minimize j(Vk + oppr). Set
Vk+1(t) = Vk(t) + (J/,kpk(t). If Vk+1(t) < 0
then Vi41(t) = 0.

Step 4) Repeat Steps 2 and 3 until

T (Vier1) —

where ¢ is a specified positive number. If the condi-
tion (53) holds, then go to Step 5.

Step 5) If V' = 0, stop; otherwise, set S, — Sy and Vi, —
Vi. Go to Step 1.

Remark 7: Using Profile Design, which is based on the CG al-
gorithm, it is guaranteed that the optimal value of the cost func-
tion J* = 0 is achieved at ¢ £. However, it is possible that the
axial transport velocity reaches the zero value before the optimal

Vi () + cupr(t) (52)

J(Vi)| < 8J(Vi) (53)
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Fig. 5. Comparison of the proposed deceleration profile (solid line) and the
conventional constant-deceleration profile (dotted line) in the presence of vis-
cous damping ., = 0.001 N-m?s.

value of the cost function is achieved. The strong technical ad-
vantage of the proposed control algorithm is that the vibration
energy is assured to be suppressed completely within the decel-
eration time of the axial transport velocity, in which deceleration
time can be selected by the designer.

IV. SIMULATION RESULTS

Numerical simulations were carried out with the system pa-
rameters listed in Table I. The Galerkin method was applied to
obtain (25) and (26) with the number of basis functions of the
approximate solution NV = 4. Fig. 5 shows the two profiles for
regulation of the axial transport velocity. In this simulation, the
axial transport velocity decreased from the value of 2 m/s to
zero with a deceleration time of 5 s. In the case of no vibration
control, the conventional constant-deceleration velocity profile
(dotted line), which has only a slope, was used. Meanwhile, the
proposed velocity profile (solid line) generated by using Profile
Design was composed of 3 slopes. The optimal control problem
was solved with the terminal time 2y = 5, and the proposed
velocity profile was obtained with 57 iterations of the CG al-
gorithm. The weight coefficient matrix was chosen as W = I,
where I is the identity matrix.

In this brief, the approximate dynamic model (25)—(26) was
used only to design the proposed velocity profile. For numerical
simulations to demonstrate the suppression of the transverse dis-
placement, the finite difference method was employed to find an
approximate solution for the PDE (13) with the boundary condi-
tions given by (14)—(16) and the time-varying velocity provided
by the profiles as shown in Figs. 5 and 7. It should be noted that
the stress functions in (13) are obtained by using (25) as men-
tioned in Remark 3.

Fig. 6 demonstrates the dynamic responses of the axially
moving membrane to two time-varying transport velocities (the
proposed and the conventional constant-deceleration profiles).
As shown in Fig. 6(a), the vibration energy decays to zero in
both cases. However, the convergence properties are different.
In the control case (the proposed profile is used), the vibration
energy (solid line) approaches the zero value at the time ¢ = 5;
that is, the transverse vibration is suppressed completely within
the deceleration time, as the control objective mentioned. This
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Fig. 6. Comparison of the vibration energies and the transverse displacements
in the presence of viscous damping d, = 0.001 N-m*s. (a) Convergence of
the vibration energies: controlled (solid line) versus uncontrolled (dotted line).
(b) Convergence of the transverse displacement at x = /2 (with control). (c)
Slow convergence of the transverse displacement at » = /2 (without control).

is consistent with the theoretical point inferred in Remark 7. In
this case, when the axial transport velocity (solid line) reaches
zero at the time ¢+ = 3.7, F(3.7) = 16. After the axial transport
velocity reaches zero, the residual vibration energy converges
slowly to zero within 1.3 s. From the physical point of view,
as mentioned in Section III, plenty of time is required if the
transverse vibration is suppressed by only the viscous damping
force. Therefore, the residual vibration energy should approach
a small value when the axial transport velocity reaches zero.
In this brief, this control strategy was executed using the
CG method. The theoretical basis of the application of the
CG method is that the vibration energy decays most quickly
between two consecutive iterations of the CG algorithm. As
shown in Fig. 6(a), this theoretical point was verified. In the
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Fig. 7. Deceleration profile generated from the proposed method (solid line)
when viscous damping does not exist.

case of control, comparing F(0) = 2500 and F(3.7) = 16, it
can be concluded that the vibration energy is almost suppressed
when the axial transport velocity reaches zero.

In the case of no control, it seems that the convergence speed
of the vibration energy (dotted line) does not change during the
deceleration time. According to the conventional constant-de-
celeration profile, suppression of the vibration energy takes 9
seconds. Moreover, when the axial transport velocity reaches
zero at t = 5, the value of the residual vibration energy is con-
siderable (F(5) = 66). It was shown that the vibration energy
in the case of no vibration control decays more slowly than in
the case of vibration control, especially when the axial trans-
port velocity decreases from the initial value to zero. The con-
vergences of the transverse displacements of the axially moving
membrane at 2 = [/2 to zero in the two cases (with control and
without control) were compared, as shown in Fig. 6(b) and (c),
respectively.

In practice, a number of web materials such as films and tex-
tiles may possess very small viscous damping, which can be
assumed to be zero (d, = 0). This leads to that the residual
transverse vibration may not be suppressed without control. In
this case, the proposed control method is well suitable for the
R2R systems which are similar to the R2R lithography system
presented in Section I, where the conventional vibration con-
trols, boundary and distributed controls, are not be able to be
employed. This will be verified by numerical simulations, as
shown in Fig. 8. The system parameters (except the viscous
damping coefficient) were maintained as presented in Table 1.
The axial velocity profile for vibration suppression (solid line)
was proposed as shown in Fig. 7. The simulation results shown
in Fig. 8 indicate that the vibration energy (dotted-line) cannot
converge to zero without the presence of a viscous damping
force, when the conventional constant-deceleration profile is
used. Meanwhile, the transverse vibration was suppressed com-
pletely by the regulation of the axial transport velocity using the
proposed profile (solid-line). Through a comparison of the simu-
lation results (time of vibration suppression and control perfor-
mance) for control and no control, the considerable improve-
ment effected by applying the control algorithm to the mem-
brane system for vibration suppression was verified.
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Fig. 8. Comparison of the vibration energies and the transverse displacements
in the case of no viscous damping. (a) Convergence of the vibration energies:
controlled (solid line) versus uncontrolled (dotted line). (b) Convergence of the
transverse displacement at »x = /2 (with control). (c) Non-converging trans-
verse displacement at & = {/2 due to no viscous damping (without control).

TABLE I
SYSTEM PARAMETERS USED IN SIMULATIONS

Parameter Description Value
Mass density 1.17x10° kg/m’

E Young’s modulus 1.8x107 N/m?

/ Distance between two rolls 4m

b Width of the membrane 0.4 m

h Thickness of the membrane 0.0015 m

d, Viscous damping coefficient 0.001 N-m’s

Py Initial tension per unit width 400 N/m

Vo Initial axial velocity S m/s

uy(x.y) Initial longitudinal displacement 0

Vo(X,)) Initial lateral displacement 0

We(x,y) Initial transverse displacement 0.05sin(zx/l)sin(zy/b)

Wo(X,p) Initial transverse velocity 0
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V. CONCLUSION

In this brief, a novel control algorithm that uses the effects of
the time-varying axial transport velocity to suppress the trans-
verse vibration of an axially moving membrane was developed.
The basis of the proposed control algorithm is the regulation
of the axial transport velocity to track the proposed profile ac-
cording to which the vibration energy decays most quickly. With
regard to the dynamics of the axially moving membrane, the
Galerkin method was applied to reduce PDEs into sets of ODEs,
which were rewritten into state-space equations. A design pro-
cedure based on the CG method was introduced to generate the
proposed velocity profile. Compared with the case of no control,
the proposed control algorithm provided considerably improved
suppression of the vibration energy. It is believed that the pro-
posed control algorithm is the first work using the regulation of
the axial transport velocity to suppress the transverse vibration
of an axially moving system. This is also expected to provide a
feasible solution to problem of the vibration control of axially
moving systems when the application of boundary control tech-
nique is impossible.
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